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Canonical Correlation Analysis 2

Abstract
The paper illustrates how canonical correlation analysis can be employed to implement
all the parametric tests that canonical methods subsume as special cases. The point is
heuristic: all analyses are correlational, apply weights to measured variables to create
synthetic variables, and require the interpretation of both weights and structure
coefficients. Because all analyses are correlational, r square effect sizes can (and should)

be reported in all analyses.
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The Basic Concepts of the General Linear Model (GLM):
Canonical Correlation Analysis (CCA) as a GLM
Jacob “Jack” Cohen (1968) was one of the first to write about the use of
regression as a general linear model, establishing that multiple regression subsumes all
the univariate parametric analyses of variance techniques. Univariate methods can be
used to test hypotheses about the effects of several independent (predictor) variables on a
single (dependent) variable, but multivariate methods examine a set of independent
variables and a set of two or more dependent variables. Several noted researchers have
pointed out that this is necessary when conducting research in the behavioral sciences, as
multivariate methods both control experimentwise Type I error rate and best honor the
reality of the data (Campbell & Taylor, 1996; Fish, 1988; Thompson, 1991, 2000).
Experimentwise Type I error rate is limited to the alpha level with multivariate methods

because you simultaneously test relationships among all the variables. The reality of the

data is best honored with multivariate methods because human behavior involves
multiple causes and multiple effects and interactions between multiple variables being
studied (Campbell & Taylor, 1996; Campo 1990; Thompson, 2000; Vidal, 1997). Thus
Cooley and Lohnes (1971) said canonical correlation analysis “is the simplest model that
can begin to do justice to this difficult problem of scientific generalization” (p. 176).

It is also becoming widely understood that canonical correlation analysis is the
most general case of the parametric general linear model, subsuming all other parametric
univariate and multivariate analyses (Thompson, 1991, 2000). Knapp (1978) wrote that
“virtually all the commonly encountered tests of significance can be treated as special

cases of canonical correlation analysis™ (p. 410). This includes ¢ tests, Pearson
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correlation, analysis of variance [ANOVA], regression, MANOVA, and descriptive
discriminant analysis (Campbell & Taylor, 1996, Thompson, 2000). Cohen (1968) noted
that while two statistical analyses could yield the same results, a given implementation
might provide more useful information or be easier to do. Because the general linear
model subsumes all other analyses, it should be used with this in mind. The present
paper will illustrate how canonical correlation analysis can be employed to implement all
the parametric tests that canonical methods subsume as special cases. The point is not
that all research ought to be conducted with canonical analyses, but rather the point is a
heuristic one: all analyses are correlational; all analyses apply weights to measured
variables to create synthetic variables that become the analytic focus; all analyses require
the interpretation of both weights and structure coefficients. Furthermore, r square or
other effect sizes ought to be reported in every study (Wilkinson & APA Task Force on
Statistical Inference, 1999).

The General Linear Model

The general linear model produces an equation that maximizes the relationship of
the independent variables to dependent variables. Researchers should understand three
important points about the general linear model. The first is that, though the design may
be experimental, all analyses are correlational. Experimental design is separate from
statistical analysis. Analysis of variance methods are used with the idea that causal
inferences may thus be made, but these methods require categorizing variables that
should not be categorized, leading to the loss of important data about variance, and do not
provide experimental control over these categorized variables unless the design is

experimental (Thompson, 1991, 2000).
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The second point is that all parametric analyses invoke, either explicitly or
implicitly, systems of weights applied to measured variables to create synthetic variables,
which are then the focus of the analysis. Thompson (2000) notes that these weights “are
often arbitrarily (and confusingly) given different names across different analyses (e.g.,
beta weights vs. pattern coefficients vs. function coefficients and equation vs. factor vs.
function)” (p. 299). These weights, however, are evaluated to determine what the findings
are rather than if the findings are statistically significant.

The third point is that because all analyses are correlational, they all yield a
measure of effect size that is analogous to r>, which needs to be reported and interpreted.
Thompson (2000) suggested that “no knowledgeable researcher reporting bivariate or
multiple correlation coefficients fails to comment on the magnitude of the squared
correlation coefficient” (p. 299). The 1999 report from the American Psychological
Association Task Force on Statistical Inference emphasized that some effect-size estimate

should always be provided in every analysis (Wilkinson & APA Task Force on Statistical

Inference).

It is important to understand the general linear model principles in order to
comprehend that all parametric analyses are related, “facilitating thoughtful researcher
judgment in selecting analyses as opposed to employing ‘lock-step’ decision strategies
that limit the utility of analyses” (Henson, 1999, p. 6).

Canonical Correlation Analysis

Canonical correlation analysis is employed to study relationships between two or
more variable sets when each set consists of at least two variables. Each set of variables

(predictor and criterion) represents a latent construct that the researcher is examining.
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Most people use CCA in situations involving only two variable sets, though the analysis
can consider more than two sets at a time (Thompson, 2000). The variables must exist
within meaningful sets, however, or the use of CCA is not appropriate. The study should
involve at least 20 participants per measured variable (Stevens, 1986). If necessary, you
can do principal components analysis to compute factor scores to reduce the number of
variables.

Because of the complexity of canonical correlation analysis, Thompson (1984)

organized some of the research questions that CCA can be used to investigate:

1. To what extent can one set of two or more variables be predicted or
“explained” by another set of two or more variables?

2. What contributions does a single variable make to the explanatory power of the
set of variables to which the variable belongs?

3. To what extent does a single variable contribute to predicting or “explaining”
the composite of the variables in the variable set to which the variable does not
belong?

4. What different dynamics are involved in the ability of one variable set to
“explain” in different ways different portions of the other variable set?

5. What relative power do different canonical functions have to predict or explain
relationships?

6. How stable are canonical results across samples or sample subgroups?

7. How closely do obtained canonical results conform to expected canonical

results? (p. 10)
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Canonical Correlation Analysis as a General Linear Model

In the present analysis, a heuristic data set for 20 elderly persons residing at home,
in assisted living, and in nursing homes will be used to demonstrate that canonical
correlation subsumes other parametric analyses as special cases. Canonical correlation
analysis will be used to perform a t-test, Pearson correlation, multiple regression,
ANOVA, MANCOVA, and descriptive discriminant analysis. Table 1 presents heuristic
data on four intervally scaled variables related to depression and abuse in the elderly:
previous intakes of abuse reports (PREVINT), age (AGE), scores on the Beck Inventory
(BECK), and scores on the Indicators of Abuse Screen (IOAS). Also included are
grouping data indicating residential location (RESIDE) and gender (GENDER). Five

contrast variables are also listed which will be described later.

INSERT TABLE 1 ABOUT HERE

All analyses were run using Statistics for the Social Sciences (SPSS —v9)
package. The command syntax for these analyses is included in Appendix A.

The canonical correlation coefficient (R.) is the correlation between the two sets
of synthetic variable scores computed by applying weights to the measured variables.
One canonical correlation will be computed for each set of standardized canonical
function coefficients and respective measured variables.

Conducting t-test with Canonical Correlation

T-tests are used to determine if the means of two groups are statistically different.

A t-test was conducted to determine if the means of males and females (GENDER)
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differed on the PREVINT variable. Results reported in Table 2 indicate that the
difference of the means of the two groups was not statistically significantly different, t =
-.138, p =.892. A canonical analysis on the same variables yielded F (1, 18) =.02,p=
.892. Table 2 also reports the CCA results, including the canonical correlation (R.),
squared canonical correlation (R, and Wilks lambda (A). Wilks lambda, like (&2), isa
variance-accounted-for type statistic, but in canonical correlation analysis, it indicates the
variance not accounted for (i.e., 1-&2). This lambda is used to test the statistical
significance of the canonical correlation (R.), decreasing (between 0 and 1) as the effect

size (&2) increases.

INSERT TABLE 2 ABOUT HERE

The p calculated values are the same in each analysis. The test statistics (t and F)
differ only in metric. The F distribution is made up of squared values of the t
distribution. Squaring t = -.138 produces .019, which matches the F value of .02. The
observed difference in the values is due solely to rounding error by SPSS.

Conducting Pearson Correlation with Canonical Correlation

Pearson correlation (r) is the most frequently used statistic when exploring
relationships between two variables. A perfect relationship providesanr=1oranr= -1,
a perfectly uncorrelated relationship provides an r = 0. The canonical correlation provides
the same results, except the canonical is measuring the relationship within multivariate
sets.

A Pearson r was computed for PREVINT and AGE. Table 3 reports the obtained

results, r = .614, p .004. The canonical correlation analysis computed a squared canonical
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correlation coefficient of .377. By transforming R.2=.377 into Rc = .614, the result is
identical to the Pearson r. The p values here are also identical. Henson (1999) noted that
“Herein lies the most fundamental of general linear model principles: all analyses are
correlational. The canonical correlation is nothing more than a bivariate r between the

synthetic variables created in CCA after the application of weights” (p. 12).

INSERT TABLE 3 ABOUT HERE

Conducting Multiple Regression with Canonical Correlation
Multiple regression uses several variables to predict scores on a criterion variable.
In this example, PREVINT was predicted by BECK and IOAS. The SPSS results of the

multiple regression and the canonical analysis are presented in Table 4.

INSERT TABLE 4 ABOUT HERE

The squared multiple correlation coefficient (Bz) derived from the regression
analysis was .247, F (1, 18) =2.792, p = .089. The canonical analysis resulted in a
squared canonical correlation coefficient (&2) of .247,F (1, 18) =2.7916, p = .089.
Rounding by the computer package accounts for any difference in values. Note that Beta
weights (B) and standardized function coefficients are easily converted into each other
using the following formulas:

B / R.= Function Coefficient
Function Coefficient * R =B
For example, BECK had a B weight of -.048. Using R.=.497 from the CCA, we find

that the standardized function coefficient matches, within rounding error, that reported in

10
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Table 4 (-.048 / .497 = -.096). With these formulas and because we know that the
regression multiple R equals the canonical R, we can find canonical function coefficients
using only a regression analysis and find B weights using only canonical correlation
analysis.

Conducting Factorial ANOVA with Canonical Correlation

Table 1 included five orthogonal contrast variables that were created with SPSS
commands (see syntax file in Appendix A). Analysis of variance methods use planned
contrasts to test specific, theory-driven hypotheses against omnibus hypotheses
(Thompson, 1994). They are presented here to show that canonical correlation analysis
can conduct ANOVA.

A 3 X 2 factorial ANOVA was conducted with GENDER and RESIDE as
independent variables and PREVINT as the dependent variable. For the CCA, the
contrast variables from Table 1 were used. The total number of contrasts needed to carry
out an ANOV A equals the degrees of freedom for each main effect. The RESIDE main
effect has two degrees of freedom and is represented by CRE1 and CRE2. The GENDER
main effect is represented by CGENDER with one degree of freedom. CGRRE] and
CGRRE?2 are cross products of the other main effects and test the RESIDE X GENDER
interaction effects. Table 5 presents results for the ANOVA: RESIDE, F = 3.168;
GENDER, F =.051; RESIDE X GENDER, F = .563. The error effect for the full
ANOVA model, .664981, was computed by dividing the sum of squares error by the sum

of squares total (131.500 / 197.750).

ii
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INSERT TABLE 5 ABOUT HERE

The canonical analysis is conducted in a series of steps, beginning with the
creation of four separate designs, using PREVINT as the dependent measure and the
contrasts as independent variables. Design 1 included all planned contrasts, CRE],
CRE2, CGENDER, CGRREI, and CGRRE?2 to test the total effect (SOS explained).
Design 2 used CGENDER, CGRRE1, and CGRRE2 to jointly test the GENDER and
interaction effects. Design 3 used CRE1, CRE2, CGRREI1, and CGRRE2 to jointly test
the RESIDE and interaction effects. The final CCA, Design 4, used CRE1, CRE2, and
CGENDER to jointly test the RESIDE and GENDER effects. Table 6 displays the Wilks
lambda values for each design. Thompson (1994) noted that lambda is analogous to a
sum of squares in ANOVA and is a “reverse” effect size, equaling the effect for the error
term. Comparing the A = .66498 for the total effect (Table 6) with the error effect size
(sum of squares error / sum of squares total: 131.500/ 197.750 = .664981) (Table 5)

confirms this relationship between the statistics.

INSERT TABLE 6 ABOUT HERE

The next step is to convert the canonical lambdas to separate omnibus ANOVA
effects by dividing the total effect lambda by the lambda value for each design (effect).
To compute the ANOVA lambda for the RESIDE main effect, the total lambda (.66498)
was divided by the Design 2 lambda (.96590), which reflects the joint effect of the
contrast variables for the GENDER main effect and the RESIDE X GENDER interaction

effect. This process “removes” the effect of the other hypotheses, leaving the omnibus

i2
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lambda for the RESIDE main effect to be .6884564 (.66498 / .96590 = .6884564 = 1).
The same process was then used to find the other ANOVA lambdas with results reported

in Table 7.

INSERT TABLE 7 ABOUT HERE

The final step is to convert ANOVA lambdas into ANOVA F statistics using the
following formula:
[(1 - Lambda) / Lambda] * (df error / df effect) = F
To illustrate, the F value for the RESIDE main effect was modeled by [(1 - .6884564) /
.6884564] * (14 /2) = 3.168. Table 8 includes the transformations for the main effects
and the interaction. Notice that the F calculations are the same as the ANOVA F |

calculations in Table 5.

INSERT TABLE 8 ABOUT HERE

Conducting Factorial MANOVA with Canonical Correlation

A 3 X 2 factorial MANOVA was calculated using PREVINT and AGE as
dependent variables and RESIDE and GENDER as independent variables. Results from
this analysis are found in Table 9. As with the ANOVA calculations above, four CCA
designs using the contrast variables were run with the canonical lambdas reported in
Table 10. Table 11 contains the conversion of the canonical lambdas into MANOVA
lambdas. Note the equivalence of the MANOVA As in Table 9 with those obtained

through the canonical analysis in Table 11. The final conversion to F values was not



Canonical Correlation Analysis 13

required here as MANOV A uses the ) value to calculate F statistics, as against the SOS

value in ANOVA.

INSERT TABLES 9 — 11 ABOUT HERE

Conducting Discriminant Analysis with Canonical Correlation

Discriminant analysis techniques can either be used predictively to classify
persons into groups or descriptively where variables identify latent structures among
groups (Huberty, 1994). This analysis was conducted with GENDER as the nominally
scaled predictor variable and PREVINT and AGE as criterion variables. Table 12 reports
a non-statistically significant result X2 (2,17) of .149, p = .928. The canonical analysis
was conducted using the planned contrast variable CGENDER as the predictor. Results
of the CCA are also reported in Table 12. Note that the results are identical for the two
analyses. The reporting of the X? and F statistics are the only difference, but these are

arbitrary, as they represent the same value expressed in a different metric.

INSERT TABLE 12 ABOUT HERE

Conclusion
The purpose of the present paper has been to demonstrate that canonical
correlation analysis subsumes all other parametric analytic methods and is, therefore, the
most general case of the general linear model. Researchers should be selective in the
methods they use for analysis, avoiding the mistake of discarding variance in data when

using OVA methods with nominally scaled variables, and using CCA when appropriate.

14
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TABLE 2

Conducting t-test with Canonical Correlation (PREVINT BY GENDER).

t-test Analysis Canonical Analysis
t(18) -.138 F (1, 18) .02
p .892 p .02
M (GENDER 1) 8
SD 3.81 R .031
M (GENDER 2) 12 R 001
SD 5.83 lambda 999
TABLE 3

Conducting Pearson Correlation with Canonical Correlation (PREVINT BY AGE)

Pearson r Analysis Canonical Analysis
r 614 R¢ 614
RS 377
lambda 623
p .004 P .004

19
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TABLE 4

Coﬁducting Multiple Regression with Canonical Correlation (PREVINT by BECK and

AGE).
Multiple Regression Analysis Canonical Analysis
R 497 R, 497
R’ 247 RS2 247
F(1,18) 2.792 F(1,18) 2.7926
p .089 p .089
lambda 315
Beta Weights Function Coefficients
BECK -.048 096
IOAS -.508 1.022
TABLE 5
3 X 2 Factorial ANOVA (PREVINT by RESIDE by GENDER).
Source SOS df MS F p r
RESIDE 59.506 2 29.753 3.168 .073 30.09%
GENDER 480 1 480 .051 .824 24%
RXG 10.574 2 5.287 .563 .582 5.35%
Error 131.500 14 9.393 1.411
Total 197.750 9 10.408

20
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TABLE 6

Canonical Analysis on Four Designs (PREVINT).

Design Independent Variables lambda

1 CRE1, CRE2, CGENDER, 66498

CGRRE1, CGRRE2

2 CGENDER, CGRRE], 96590
CGRRE2

3 CRE1, CRE2, CGRRE], 66741
CGRRE2

4 CRE1, CRE2, CGENDER 71845
TABLE 7

Conversion of Canonical Lambdas to Omnibus ANOV A Lambdas.

ANOVA Effect Designs Transformation ANOVA lambda
RESIDE 1/2 66498 /.96590 .688456
GENDER 1/3 66498 / .66741 99636

RESIDE X 1/4 66498 /.71845 92558
GENDER
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TABLE 8

Conversion of ANOVA Lambdas to ANOVA F Statistics

Source Transformation F
RESIDE [(1 - .688456) /.688456] * 3.168
(14/2)=
GENDER [(1-.99636) / .99636] * 051
(14/1)=
RESIDE X GENDER [(1-.92558) /.92558] * .563
(14/2)=
TABLE 9

3 X 2 Factorial MANOVA (PREVINT and AGE by RESIDE and GENDER).

Source lambda df F p
RESIDE 61612 4,26 1.78098 163
GENDER .94694 2,13 36421 702
RESIDE X 73343 4,26 1.08985 382
GENDER
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TABLE 10

Canonical Analysis on Four Designs (PREVINT and AGE by Contrasts).

Design Independent Variables lambda

1 CRE1, CRE2, CGENDER, 47617

CGRREI], CGRRE?2

2 CGENDER, CGRREI, 77285
CGRRE2

3 CRE1, CRE2, CGRREI, .50285
CGRRE2

4 CRE1, CRE2, CGENDER .64923
TABLE 11

Conversion of Canonical Lambdas to Omnibus MANOVA Lambdas.

MANOVA Effect Designs Transformation MANOVA lambda
RESIDE 1/2 47617/ .77285 6161222
GENDER 1/3 47617/ .50285 .9469424

RESIDE X 1/4 47617/ .64923 .7334381
GENDER

23
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TABLE 12

Conducting Discriminant Analysis with Canonical (PREVINT and AGE by GENDER).

Discriminant Analysis Canonical Analysis
R .093 R .093
RS .0086 R’ .009
lambda 991 lambda 991
x? .149 E .0746
df 2,17 df 2,17
p 928 o] | 928

24
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Appendix A

SET BLANKS=SYSMIS UNDEFINED=WARN printback listing.
TITLE 'Canonical Correlation Analysis as the General Linear Model' .
COMMENT
COMMENT Heuristic data for 20 cases
COMMENT PREVINT - previous reports of abuse
COMMENT AGE - age
COMMENT BECK - Beck Depression Inventory
COMMENT IOAS - Indicators of Abuse scale
COMMENT RESIDE - home(1), assisted living(2), nursing home(3)
COMMENT GENDER - male(1), female(2) .
DATALIST
FILE='a:ccagim1.txt' FIXED RECORDS=1/
ID 1-2 PREVINT 4-5 AGE 7-8 BECK 10-11 IOAS 13-14 RESIDE 16
GENDER 18.
EXECUTE.
list variables=all/cases=999/format=numbered .

COMMENT show that cca can do t-test.
T-TEST
GROUPS=GENDER(1 2)
/MISSING=ANALYSIS
NARIABLES=PREVINT
/CRITERIA=CIN (.95) .
MANOVA
GENDER WITH PREVINT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM= (STAN ESTIM COR) .
COMMENT Show that cca can do Pearson .
CORRELATIONS
NARIABLES=PREVINT AGE
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE .
MANOVA
PREVINT WITH AGE
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).
COMMENT Show that cca can do multiple regression.
REGRESSION
/MISSING LISTWISE
ISTATISTICS COEFF OUTS R ANOVA
/ICRITERIA=PIN (.05) POUT (.10)
/INOORGIN
/DEPENDENT PREVINT
/IMETHOD=ENTER BECK IOAS .
MANOVA
BECK IOAS WITH PREVINT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR) .
COMMENT Show that cca can do factorial ANOVA
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COMMENT Compute contrast variables to do cca.
IF (RESIDE = 1) CRE1 =-1.
IF (RESIDE=2)CRE1=0.
IF (RESIDE =3) CRE1=1.
COMMENT Tests equality of the means of home(7) vs. nursing home (5) residence.
EXECUTE .
IF(CRE1=-1)CRE2=-1.
IF(CRE1=0)CRE2=2.
IF(CRE1=1)CRE2=-1.
EXECUTE .
COMMENT Tests equality of means of assisted living(8) vs. home and nursing home(12)
residence .
IF (GENDER = 1) CGENDER = -1.
IF (GENDER = 2) CGENDER =1 .
EXECUTE . .
COMMENT Tests equality of means of males (8) vs. females (12) .
COMPUTE CGRRE1 = CRE1 * CGENDER .
COMPUTE CGRRE2 = CRE2 * CGENDER .
EXECUTE .
COMMENT Tests gender by residence effects.
COMMENT Show contrast variables are orthogonal .
CORRELATIONS
VARIABLES=CRE1 CRE2 CGENDER CGRRE1 CGRRE2
/PRINT=TWOTAIL SIG
IMISSING=PAIRWISE .
COMMENT Step one: run factorial ANOVA and cca on construct variables.
ANOVA
VARIABLES=PREVINT
BY RESIDE(1 3) GENDER(1 2)
/IMAXORDERS ALL
/METHOD UNIQUE
/FORMAT LABELS .
MANOVA
CRE1 CRE2 CGENDER CGRRE1 CGRRE2 WITH PREVINT
/PRING=SIGNIF (MULTIV EIGEN DIMENR)
IDISCRIM=(STAN ESTIM COR).
MANOVA
CGENDER CGRRE1 CGRRE2 WITH PREVINT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
IDISCRIM=(STAN ESTIM COR).
MANOVA
CRE1 CRE2 CGRRE1 CGRRE2 WITH PREVINT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
IDISCRIM=(STAN ESTIM COR).
MANOVA
CRE1 CRE2 CGENDER WITH PREVINT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
IDISCRIM=(STAN ESTIM COR) .
COMMENT Show cca can do MANOVA,
MANOVA
PREVINT AGE BY RESIDE (1 3) GENDER(1 2)
/PRINT SIGNIF(MULT UNIV)
INOPRINT PARAM (ESTIM)
/METHOD=UNIQUE
/ERROR WITHIN+RESIDUAL
/DESIGN .
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MANOVA
CRE1 CRE2 CGENDER CGRRE1 CGRRE2 WITH PREVINT AGE
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR) .
MANOVA
CGENDER CGRRE1 CGRRE2 WITH PREVINT AGE
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR}) .
MANOVA
CRE1 CRE2 CGRRE1 CGRRE2 WITH PREVINT AGE
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR}) .
MANOVA
CRE1 CRE2 CGENDER WITH PREVINT AGE
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR) .
COMMENT Show cca can do discriminant analysis.
DISCRIMINANT
/GROUPS=GENDER (1 2)
VARIABLES=PREVINT AGE
/ANALYSIS ALL
/PRIORS EQUAL
/CLASSIFY=NONMISSING POOLED .
MANOVA
PREVINT AGE WITH CGENDER
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR}) .




L DOCUMENT IDENTIFICATION:

Title:

o TM032337

U.S. DEPARTMENT OF EDUCATION ®

T aveationet fovosres marmeiomemerena” | E=1C
REPRODUCTION RELEASE

(Specitic Document)

_CANONICAL CORRELATION ANALYSIS

THE BASIC CONCEPTS OF THE GENERAL LINEAR MODEL (GLM) :

(CCA) AS A GLM

AURORS). Anne-Miarie Kimbell
Corporate Source:

Pudtucaton Date:

2/1/01

18 REPRODUCTION RELEASE:

In orger 10 aissen mate as widely as possidie timety and sigrulicant materals of interest 10 the QUCaNONat Community. cocuments
announced In the montnty apstract journal of tne ERIC system. Resources in Educaiion (RIE). are usuaily maaas avauable to users
N microtiche. reproguced paper CODY. ana S1ECIONIC/ODNCal media. and sola tnrougn tne ERIC Document Reproaucton Sernce
(EDRS) or oner ERIC venaors. Creart 1s given 10 the source Of each cocument. and. if feOrOAUCTION retease s gumo one of

the following notices 1S atfixed 1o the gocument.

It permussion 1S granteq o reproguce the identified document. piease CHECK ONE of the foliowing 0ptions ana sign the reieass
Delow.

x - Sampte sticker t0 be effixed to document

Sampie sticker to be atiixed to document ‘

Check here! -pepuission 10 RePRODUCE THIS “PERMISSION TO REPRODUCE THIS or here
Permutting MATERIAL HAS BEEN GRANTED BY MATERIAL IN OTHER THAN PAPER

- microtiche LOPY HAS BEEN GRANTED BY Permittng
(4% 6 titm), ANNE-MARIE KIMBELL \6 I teomcucuon
paper Copy. - “Q in other than
ana concal meds Tﬁ:",gni):’,fgz%:‘“';::io;q:fs TO THE EDUCATIONAL RESOURCES
reproguction : INFORMATION CENTER (ERIC)."

Lavel 1 Lavel 2

Sign Here, Please

Documents will be processed as InICA1EA Drovided feOMOQUCHION Quality permits. || PENTUSSION (0 reproduce s granted., but
nernher DOX 13 checkeq. gocuments will be processed at Level 1,

| nereoy grant to the Educational Resources information Center (ERIC) nonexctusive permission 10 reproduce this documen as
inaicatea apove. Reoroquction from the ERIC microticne or eiectronicrootical meaia oy persons other than ERIC empioyees ana s

system comnm fequires permrssion {rom tne copyngnt hotder. Exceoton 1S Maoe tor NON-Drotit rEPrOCUCHoN by toranes ana otner
tymmmuonneecsotmmrmtomemms

Poson:
RES ASSOCIATE

ANNE- MARI KIMBELL

on:
TEXAS A&M UNIVERSITY

AQaress:
TAMU DEPT EDUC PSYC
COLLEGE STATION, TX 77843-4225

Teteonone Numoer: T 7 9
(48 )

Dae: 4 ,18/01




